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Extension of the adiabatic approach to a multi-step separation method is 
presented. This method step by step reduces the multi-dimensional Schr6din- 
ger equation to the effective equations of lower dimensions. The reduction 
procedure allows to take advantage of multi-level hierarchy of various physical 
systems. The multi-step separation method is applied in the calculation of 
vibrational energies of coupled oscillators. The new method is found to be 
very effective and accurate. 
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1. Introduction 

In the description of many-body systems the approximate methods are usually 
applied which allow to reduce the multidimensional Schr6dinger equation to the 
effective equations of a lower dimension. Such approximations are performed 
with the adiabatic Born-Oppenheimer (BO) method [1, 2] and its modification, 
the adiabatic Born-Huang (BH) method [3]. The BO and BH methods make use 
of the hierarchy within the molecule structure in which the electron motion creates 
the effective potential for the nuclei. Thus, the nuclei are i n a  way subordinated 
to the electrons. The essence of the adiabatic methods is a division of the whole 
configuration space of  the system into the subspace of electron coordinates (re) 
and the subspace of nuclear coordinates (r,). Then the hierarchy of these sub- 
spaces is fixed. The electron coordinates (re) are treated as "more important" so 
in the beginning the electron function ~e and electron energy ~e are determined 
which parametrically depend on (rn): 

(H - T .  - ~ e ( r . ) ) ' ~ ( r e ;  r~ = 0 (1)  
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where H is the total Hamiltonian of a molecule and T~ is the kinetic energy of 
the nuclei. 

In the second step the nuclear function ~,(r~) and approximate energy of the 
system ~ are determined from the equation: 

(Tn + ~o(~o)- ~ ) ~ ( ~ )  = 0 (2) 

in which ~e(rn) is treated as a potential. The approximated total wavefunction 
~(rr r~) is defined as 

 (re, ro) =  e(re; (3) 

The .hierarchy in the adiabatic methods determines the sequence of the separation 
of variables, i.e. the sequence of the determination of effective wavefunctions for 
the two subsystems: electrons and nuclei. 

There are a lot of physical systems the structure of which reveals a complicated 
multi-level hierarchy. For example a molecule. Within its electron subsystem 
various types of states can be distinguished e.g. Rydberg states, valence states, 
core states (see for example the monograph of Herzberg [4]). Within its nuclear 
subsystem we can distinguish the states connected with low-frequency nuclear 
motions (inversional and torsional motions), with nuclear motions of medium 
frequencies (ring vibrations) and with those of high frequencies (vibrations of 
light atoms) [5]. 

In this paper we propose the multi-step adiabatic method of reducing the variables 
in a multi-dimensional problem. This new method provides the possibility to take 
advantage of the multi-level hierarchy of physical systems. 

We study this method in the multi-dimensional problem of coupled oscillators 
(CO). The CO models represent molecular vibrations, so they are widely used 
in the vibrational spectroscopy of molecules [6, 7], in the theory of intramolecular 
energy transfer and unimolecular reactions [8, 9]. 

The calculations of energy levels of CO is a serious problem. Most often the 
variational Ritz method is applied, however its application is limited by the size 
of the basis growing quickly by increasing the dimension of the problem. 

Recently, various approximate methods have been studied intensively as to their 
application to the CO problem. So far most of the works concerned semiclassical 
approximation [10-16], SCF [7, 17-19] and SCF CI [19-21] methods. Quite 
recently, an adiabatic method was also applied in the calculations of vibrational 
energies of molecules [22-24] as well as in the study of the model systems such 
as Barbanis [25], Caswell-Danos [25] and H6non-Heiles [26, 27] CO. 

In this paper we study the efficiency of the adiabatic multistep separation in the 
CO problem. This method reduces the multi-dimensional problem by a multi-step 
procedure. We prove that the method discussed is easy to be applied and is very 
useful in the CO problem. 



Adiabatic multi-step separation method 323 

2. Reduced wavefunctions and effective potentials 

Let us consider a system with many degrees of freedom. Having assumed that it 
has a hierarchic structure let us divide the configuration space X of its variables 
into subspaces: X~-(xl, x2 . . . .  ,XN)=(1,  2 , . . . , k , . . . , n )  where k~--(Xko 
Xk2,''-, Xk~) stands for the kth subspace connected with the kth subsystem. 

The approximate wavefunction of the system described by the Hamiltonian 

H : ~  Tk(k)+ V ( 1 , 2 , . . . ,  n) (4) 
k 

we define in the form 

4~(1, 2 . . . . .  n) = 4~,(1; 2 , . . . ,  n)q~2(2; 3 , . . . ,  n ) . . .  q~,(n) (5) 

where the functions q~k(k; k + 1 , . . . ,  n) we will determine from the equations of 
the following general form: 

[Tk(k)+Vk(k ,k+l , . . . ,n ) -~k(k+l , . . . ,n )]~bk(k;k+l , . . . ,n )=O.  (6) 

The variables k +  1 . . . .  n in the kth equation are the parameters as they do not 
appear in the differential operators Tk(k). 

In order to determine effective potentials I~ k so that they reflect the hierarchy of 
the system andgive  good approximation for its wavefunction 0 let us consider 
the functions ~bk. They are connected with the reduced density matrices [28-33] 
which are defined by the relations: 

p(k)(k, . . . .  n) = (~(1, 2 , . . . ,  n)lO(1, 2 , . . . ,  n)},,...,k-x (7) 

where 

(~10>o-= 1012 

and 

(010)1 ...... = 1 (normalization condition). 

It is easy to calculate fi(k) for the approximate wavefunction of the form (5) 
provided that the following normalization condition is imposed on the q~k func- 
tions: 

(~;k(k; . . . .  n ) I ~ k ( k ; . . .  ; n ) ~  = 1. (8) 

This condition can always fulfilled if Eqs. (6) are linear. Then, we have: 

p(~>= (~1~),.2,...,~-1 = H [~,( / ; . . .  ;n)l 2 (9) 
l = k  

and 

14;~I~ = ~<~>(k,..., ,~) l ~<k+'~( k + i , . . . ,  n) 

= ( ~ ( 1 , . . .  , n ) ] ( ~ ( 1 , . . . ) n ) ) l , . . . , k _ , / ( ( ~ ( 1  . . . .  ) r l ) l r  ) n)l,...,k. (10 )  
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As can easily be seen, the f u n c t i o n s  ~k are strictly connected with ]~(k) SO we will 
further refer to them as the reduced wavefunctions (RWF). 

It is worth noticing that RWF can be calculated not only for the approximate 
wavefunction ~ but for the exact 0 as well. The exact RWF ~bk defined by 

= . . ,  n)/p(k+')(k + 1,. . . ,  n) (11) 

has the analogical properties as the approximate ones, namely they obey condition 
(8) which follows directly from Eq. (11) and fulfil Eq. (9). 

Now, let us consider the relation between {&k} and the energy E of the system. 
Let us calculate the integral (~bTkt~)l,..., n. As the operator Tk 

Tk=-(h2/2) Y. mT'O2/Ox 2 (12) 
i ~ k  

does not act on the functions r it is sufficient to calculate 

( ~ ) k  " " " ~ l  T k ~ b l  " " " ~bk)l,...,k" 

From Eq. (8) for &k it follows: 

O / O X i ( ~ ) k l ~ ) k )  k = 2 ( t ~ k O / O X i f ~ k ) k  = 0 for i ~ I = 1 , . . . ,  n (13) 

which implies: 
k 

(t~Tk~b)l . . . .  = 1-I (I,~k[ 2 - '  l~,+,12(~,~Td,,),)t+, ....... 
l = l  

So, the expression for energy can now be rewritten in the recurrential form: 

~k+l(k-k 1, . . . ,  n) =(r + V~kfq6k)k (14) 

where 

k-1  
vekf~(k,..., n)= ~k(k,.. . ,  n)+ ~ Ak,,(k,..., n) (15) 

l= l  

where 

ak, t = (](~k-al 2 ~  l~,+,12(~,Tk~,),),+,, ,k-, 

and 

(16) 

~1 --- V ( 1 , . . . ,  n), ~n+l --- E. 

If we divide the configurational space into subspaces and arrange them in a 
certain way, i.e. introduce a certain hierarchy, then for each subspace which we 
will further identify with the kth group of particles of quasiparticles in the system, 
a RWF exists which depends only on the variables (k) and on less important 
( k +  1 , . . . ,  n). The functions {~bt}k=l allow to calculate ~ k + l ( k d ' - 1 , . . . ,  n) which 
has the meaning of the average energy of the kth group of particles, and 
Ak.~(k,..., n) which represent kinematic couplings of the kth group with the 
more important ( 1 , . . . ,  k - 1 )  groups. Ako will be further referred to as kth 
kinematical correction of (k - / ) t h  order. The V] ~ represents the effective potential 
of the kth group of particles. The above results extend the meaning of RWF and 
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the effective potential which has been proposed by Hunter [34-36] for the case 
of the division of the configurational space into two. We would like to propose 
an approximate method to calculate VT, fr and Ok. 

3. Adiabatic multi-step separation method 

We are interested in the problem of approximate determination of RWF ~bk and 
effective potentials V~ a. We would like to calculate them from the equations of 
the form (6). These equations are postulated to have their structure consistent 

wi th  the structure of Eqs. (14-16). Under these conditions we obtain: 

2  f;o, k=l , . . . ,n  (17) 
1=1 

where 

~ V(1,2, n), ~ - ' g~ .  

We will now show that ~a, defined as above, is an upper bound of the ground-state 
energy E of the system. With regard to Eqs. (14-17) and assuming the functions 
~b A as normalized with respect to the relevant variables (k) we obtain 

k = ,  

The variational principle for the SchrBdinger equation ( H -  E)q, = 0 leads to 

~a  = (0~H0~a)~ ...... - (~/,U~b)~ ...... = B. 

It is worth noting that for n = 2 Eq. (17) defines the adiabatic BH approximation 
applied in the description of molecular systems. Hence, these equations represent 
the extension of the BH method. 

At n > 2, the inclusion Of all kinematic corrections A~  and especially those of 
higher order is beset with difficulties, however, equations of the type (17) can be 
postulated in which some of the corrections do not occur. 

Let us denote by ~r the set of indices (k, l) labelling all the corrections A~ 
occurring in equation (17), and let ~ stand for the subset ~ c  ~r and ~ =  A\~. 

We assume the equations in the form: 

[ ] Tk + ~ +  Y. A~t- ~k+l ~ k  = 0, k -  1 , . . . ,  n (18) 
l = l  

( k , 1 ) ~  

where the definitions of A~t and ~ are analogous to those of Eq. (17), and 
proceed to explain how to assess the accuracy of the approximation assumed. 

4. The accuracy of the extended adiabatic approximation 

The accuracy of the approximate wavefunction ~b • and energy ~ determined 
from Eq. (18) depends on the fact whether the division of the space as well as 
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the hierarchy assumed correctly reflect the structure of the system. The exact 
energy E calculated from Eqs. (14-16) does not depend on that, because the 
exact RWF's {~bk} include the information about the whole system since they are 
determined by the exact ~h of the whole system. Therefore a change in the division 
of the space immediately leads to the corresponding change in {~bk}. It is easy 
to note that the adiabatic RWF's {q5 A} do not have such property as each of them 
comprises only a piece of information about the system. The equation for the 
adiabatic kth RWF only takes into account the more important subsystems 
l = 1, . .  �9 k -  1 which means that the adiabatic approximation assumes a one- 
direction coupling between the subsystems (the less important system is subordin- 
ated to the more important one with no feedback possible)�9 Thus, the problem 
of the adequacy of the approximation assumed influencing the accuracy of the 
energy determination is of great importance. In the following we will give the 
relations allowing to estimate this accuracy for the ground-state of arbitrary 
system�9 

The following inequalities are fulfilled (the proof is given in Appendix 7.1) 

E-< g ~ +  E (~b~" �9 .~r162162 ~r �9 q ~ k " X k ,  l q " k  � 9  ~ ) n ) k ,  . . . . . .  (19a) 
( k , t ) e g e  

E >- ~ +  Y, ( G " "  '~kl&.,--A~,l '~k' '"  4.),~ ..... 
( k ,  O e ~  

+ Y~ ( , ~ . ' "  6kAk.16k''" 6.)k. ...... (19b) 
(kd)e ~? 

The preceding inequality can serve for assessing the accuracy of extended BH 
A k ,  t ) ,  method�9 Indeed, by putting ~ = sr (taking into account all the corrections 

we obtain 

(r . . . q S k [ A ~ , , - -  ak , , lC~k"  " " O~)k ,  ..... >_ g ~ -  E >_O. (20) 
(k,0e~r 

The accuracy of BH method is, thus, given by the sum of the averaged with the 
{~bk} differences between the exact and the adiabatic kinematical corrections 
which, averaged, are too large. 

Assume we include no corrections A~ in Eqs. (18)in which case ~ = O. We then 
obtain equations analogous to those of ~ff. Applying the inequalities (19a, b) 
we have: 

Z (~b~ 6" .~ewa~6.a~c ,h~c~ > / ;  g~c->0 (21) �9 " t l l k  ~ X k ,  l t t l k  �9 " " " e ' n  / k , . . . , n -  ~ -  
(k,t)E~ 

signifying that the extended ~19 method gives a lower bound to the energy, as 
in the case of n = 2 [37, 38]. 

Between gg  and g~o the following relation holds: 

�9 " " t t ~ k  " n t k ,  l t t ~ k  " " v " n  / k , . . . , n -  ~ - -  
( k d ) ~  

> E ( 4 ~ n  " "  " a s Y ' t ~ e ' a g r  se  - �9 U ' k - - k , m ' k  " ' "  ~b.)k, ..... -->0 (22) 
( k d ) J e  
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stating that the result obtained on the rejection of an arbitrary number of 
corrections Ak~ is not lower than ~ 

In the special case of ~---sr the relations (22) permit the evaluation of the 
difference ~ - ~f~e which is an estimation of  maximum error given by extended 
~ 6  or BH methods. 

5. Adiabatic multi-step separation method for coupled oscillators 

In this section we will show that the extended adiabatic method is very useful 
in calculations of eigenenergies of the multi-dimensional Schr6dinger equation 
for COs. 

We will study the accuracy of the method presented for the generalized H6non- 
Heiles CO model defined by the three-dimensional Hamiltonian 

3 
H(Xl ,  x2, x3)= 2 hi(x~)+ Vc(xl, x2, 23) (23) 

i=1 

with 

h,(xi) 1 2 2 = ~ ( - 0 / O x i  + 2 3 (~oix~) + 2a~,oX~) (24a) 

and 

Vc = al 2xlx2+ �9 a l , 3 X l X 3 .  (24b) 

Recently, the energies of  this Hamiltonian have been calculated by applying 
semiclassical [15, 16], SCF and SCF CI [19] methods. 

We will solve Eq. (17) for Hamiltonian (23) applying perturbation theory because 
usually [aid[<< 1 (we will take al,0 = a3,o = -0.01, a2 ,o  = 0 and al, 2 : a l ,  3 = - - 0 . 1 ,  the 
same as in Refs. [16, 19]). In calculations we will neglect all the terms lower than 
10 -4. 

Let us divide the space X = (x~, x2, x3) into subspaces 1 = (x~), 2 = (x2), 3 = (x3) 
and let us calculate the adiabatic energies from Eq. (17) in which we will also 
neglect some kinematic corrections Ak,~. The method of solving this equation is 
described in the Appendix. The numerical values of  the energies E~e(Ak ,  z = 0), 
EZe(A~,2 # 0), and E~(Ak ,  i # 0) for the states (nx, n2, n3) are given in Table 1, and 
they are compared with the SCF and SCF CI energies. We see that the adiabatic 
method gives reasonable results although the frequencies ~o~ of the oscillators are 
comparable. Let us note that for all states considered except the state (1, 0, 0) 
which strongly interacts with the state (0, 0, 2) as ~ol-~2o)3 the relations E ~ e <  E 
and E ~ > E hold. These relations allow to estimate the accuracy of adiabatic 
energies when the exact energy E is not known because A E ~  E ~ - E  < 
E -~ _ E ~C" 

This accuracy depends on the order in which the variables are reduced i.e. on 
the hierarchy assumed, but for our CO model this hierarchy is not obvious. In 
order to prove whether the hierarchy assumed corresponds to the real hierarchy 
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Table 1. Adiabat ic  energies E~6(A~t = 0), E~e(A~1 ~ 0) and E~(Ak~,,t # 0) calculated by the reducing 
of variables: x~ - x 2 ~ x3, and E scF and E scFcl energies of the three-dimensional CO. to 1 = 1.3, to 2 = 1, 

to 3 =0.7, a~,o= a3,o = -0.01, a l ,  2 = a l ,  3 = -0.1 

n I n 2 n s ~ 6  ~' ,ff SCF '~ SCF CI" 

0 0 0 1.4926 1.4950 1.4953 1.4951 1.4938 

0 0 1 2.1842 2.1868 2.1870 2.1884 2.1852 

0 1 0 2.4827 2.4899 2.4901 2.4883 2.4883 

1 0 0 2.7738 2.7812 2.7815 2.7782 2.7721 

0 1 1 3.1739 3.1815 3.1818 3.1815 3.1770 

0 0 2 2.8726 2.8752 2.8754 2.8786 2.8736 

a Calculated in [19] 

in the system, let us calculate the energies of  CO reducing variables in the order 
x2 ~ x~ ~ x3. The results given in Table 2 show that although the frequency of the 
first oscillator o92 is less than o9~ this reduction is much more effective than the 
previous one. These results are also much better than SCF results. 

In order to analyse this interesting result let us calculate adiabatic energies in 
both schemes of reduction for various values of  the frequency ratios/zk~ -= ogk/ogt. 
The adiabatic energies included in Table 3 show that for p~32 ~ 0.5 both schemes 

Table 2. Adiabat ic  energies E ~ ,  E s~ and E ~ calculated by the reducing of variables: 

x 2 ~ x 1 ~ x3, and E scFcI (exact) energies of the three-dimensional CO. The parameters 

o) i and akj are the same as in Table 1 

nt n2 n3 ~ ~ ~ S C F C I  ~ 

0 0 0 1.4932 1.4939 1.4941 1.4938 

0 0 1 2.1848 2.1855 2.1857 2.1852 

0 1 0 2.4843 2.4864 2.4866 2.4857 

1 0 0 2.7724 2.7731 2.7738 2.7721 

0 1 1 3.1757 3.1777 3.1780 3.1770 

0 0 2 2.8732 2.8739 2.8741 2.8736 

a Calculated in [19] 

Table 3. Adiabat ic  energies E ~c, E ~ and E ~ calculated for the ground state of CO in both reduction 

schemes: I (x l~x2~x3)  and H (x2~xl~x3)  for various /Zkj values, to3=0.7, al ,0=a3,o=--0.01,  

al, 2 = al, 3 = --0.1 

~32 0.7 0.7 0.7 0.5 0.5 0.5 0.3 0.3 0.3 

~21 0.7 0.5 0.3 0.7 0.5 0.3 0.7 0.5 0.3 

II  

I~G 1.5581 1.8464 2.5148 2.0469 2.4480 3.3821 3.1817 3.8488 5.4046 

X 1.5599 1.8470 2.5149 2.0473 2.4481 3.3821 3.1818 3.8488 5.4046 
~r 1.5600 1.8471 2.5149 2.0474 2.4481 3.3821 3.1818 3.8488 5.4046 

~G 1.5585 1.8464 2.5146 2.0470 2.4480 3.3820 3.1818 3.8488 5.4046 
1.5591 1.8471 2.5153 2.0472 2.4481 3.3822 3.1818 3.8488 5.4047 

Sr 1.5593 1.8471 2.5153 2.0472 2.4481 3.3822 3.1818 3.8488 5.4047 
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work very well ( hE  ~ ~ 10 -4) and for Iz21 -~ 0.5 the second scheme is more effective. 
So, we see, that a reduction of the variables in order of decreasing frequencies 
is not always the best. This fact indicates that the hierarchy in the system of CO 
is not solely determined by IZkl. 

In order to answer the question which parameters determine the hierarchy in the 
system of CO let us calculate the errors AE~C==-E~V-E  determining E by 
perturbation theory. With an accuracy to a~t for both reduction schemes we obtain 

A E ~  ~c ~ e  = A/~I, 2 "b hE1,3 , (25) 

where 

~0'  hE,,2 (X 1 "-~ X 2 ~ X3) = r 1 6 3  2NIN2)(/z21(1 _ 4/z21) ) 2  -1, 

A E ~ I , ~ ( X 2 . _ > X I  X3)_  2 2 -1 ---> o92'Y12(M 1 - 2 t z 1 2 N i N 2 ) ( 4 ( t z 1 2 - 4 ) )  , 

-> r T31 ( M  1 - 2 ~ 3 1 N I N 3 ) ( 4 ( / ~ 3 1 - - 4 ) )  -1 

Xa 

where 

')/kl = ak,  l(-Ok 5/2 

and 

(26a) 

(26b) 

(26c) 

(27) 

N i =  ni + l / 2 ; Mi = n2i + ni + l. (28) 

We see that 

1) the errors AE ~ almost never depend on the anharmonicity of CO because 
in Eqs. (26a-26c) the terms proportional to ai.oakd and a~o do not occur. 
2) the parameters determining AE ~e are/xk~ and effective coupling constants 3'kl 
as well. 
3) IAJz  (x  x2-*x3)l>lAJZ ' (x= xa x )[ for /~2~0.5 for the ground state 
which elucidate the results in Table 3. So, for comparable frequencies oJ1 ~ w2 
the second scheme is better. 

Now, let us analyse the role of kinematic corrections Aff, t (we will consider here 
the first reduction scheme). If Aa2,1 is taken into account, then for Iz21<< 1, 

2 2 here,2 ~ w1721M2 and if A~1 is taken into account, then hEft.3 ~-oJlT31~31N~N2/8. 
So, these corrections improve the adiabatic energies. They are essential for the 
strong couplings between the oscillators. 

6. Conclusions 

We proposed a new method for the solution of multi-dimensional problems. The 
main idea of  this method is a division of the whole configurational space of the 
physical system into subspaces according to the hierarchy in the system. This 
hierarchy determines the sequence of reduction of  dynamical variables describing 
the subsystems. This reduction allows to calculate the reduced wavefunctions 
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and effective potentials for each subsystem and in consequence the total wave- 
function and energy of the system considered. Thus, the adiabatic multi-step 
separation method is very convenient for treating multi-level hierarchical systems. 

We have applied this method to solve the multi-dimensional CO problem. We 
have found the parameters determining the hierarchy in the CO system. They 
are not only/Zk~ but also the effective coupling constants Ykt- Thus the adiabatic 
method gives very good results even for ~Zkl = 1 because, usually, 1 as in 
the CO model considered. 

The accuracy of the adiabatic energies hardly depends on the anharmonicity of 
CO, so this method can be used for a wide class of anharmonic CO. 

Adiabatic equations for CO can be solved rather simply without iterations as in 
SCF method. Simplicity and accuracy of the method proposed make them very 
useful in the CP problem. 

Acknowledgement. This work  was suppor ted  by PAN M.R.I. Project. 

7. Appendix 

7.1. Estimations o f  the adiabatic energy errors 

Here we derive the relations (19a, b). From the variational principle for the 
Schr~dinger equation we have 

E = (OHO)I ...... -< ( ~ X H ~ b ~ ) l  ...... ~ ~ (29) 

where ~ - =  -~ ~,+1 is calculated from Eqs. (14-16) in which ~bk should be replaced 
by ~b x, i.e. 

1 
(~,l)e~ 

Let us take the first equation from Eq. (18) with the index K in which some 
kinematic corrections A~,l do not occur. Then we have ~K = $~K and 

l l 
(K,/)~f '  (K,/)c~" 

( O i,: A r.t~b K)k. (30) 
l 

( K , I ) ~  

Taking this equality into account we further obtain 

( ~ K +IAK +lC~K +I)K +I 
1 

( K + I , I ) ~  

+ E (qbK+~bKAK,,&r.&r+a)r.K+,.~ ~ ~ ~ ~ (31) 
/ 

( K , t ) ~  
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It  is easy to see that  for  K + i = n + 1 we will obta in  

$.+1 ~ +  Y~ (,/'.~ ~ ~ . . . . . . .  r g A~,tr k O , ) ~  ..... (32) 
(k,l)eY ~ 

which af ter  including the relat ion (29) provides  the inequali ty (19a). 

We shall n o w  prove  the inequal i ty  (19b). In this order  let us consider  Eqs. (14) 
for  k <  K. By apply ing  the variat ional  pr inciple  to Eq. (18, k = 1) we obta in  

$2 = (6,[ 7"1 + Vl&,h - (6~[ 7"1 + V16~)1 = ~ .  (33) 

For  k = 2 we have  

$3 = (&21 T2 + $2 + A2.,Ir = (r T2 + $2 + A~,tCz)2 + (&2]A2,1 - A2~,11r 

Taking into account  (33) and  the variat ional  pr inciple  for  Eq. (18, k = 2) we can 
write 

(r T2 + $2 + A~11r ~-- (~b21 T2 + $2 ~ + A~1Ir 

$2 +A2,,1r $3 ~, 
thus 

$3 ~ ~ f +  (r - A~11r 

In  a similar  way we will obta in  for  k = K - 1 

S K  >- ~'~K + Z (q~K- l  " " " r  l - - m ~ l l f b k  " " " CK-1)k, . . , ,K-I .  
(k,l)e~ 

Now,  taking k = K we have 

S E + , = ( f K I T K + $ K +  Y~ Ar~ , ICK)K-- - - - ( r  E A~, [ r  
(K,l)e~r l 

(K3)ege 

+ Z ( r  CklA~,--A~,[r CK)k,...,K+ ~ _(&KAK,,r 
( k,l)~ ~ ( K,I)e $C 

I f  we cons ider  cor responding  relations for  k = K + 3 , . . . ,  n + 1, we will obta in  
inequal i ty  (19b). 

In  a s imilar  way  we obta in  the remaining relat ions given in Sect. 5. 

7.2, Solution of  adiabatic equations 

Here  we solve Eqs. (17). We first consider  the case when  A~t = O. The first equat ion  
k = 1 can be writ ten in the fo rm 

1 2 2 [-~O /Ox, + Vl(X, ; x2, x3) + V~(x2, x3) - $~e(x2, x3)]r ; x2, x3) = 0 (34) 

where  

-2  2 2 3 
V 1 --~ s l(X1 + 2 K 1 , 2 x 1 x  2 + 2K1,oXl)/2, 

~1 = ( co~ + 2a1,3x3) 1/2, 

V2=(w~x~+ 2 2 3 (35) o o)3x3+2a3,oX3)/2 ' 

K,j = a,j/ ~ ~. 
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In t roduc ing  the var iable  x = x ~ - x ~  where  x~ is the equi l ibr ium coordinate  for  
which (a Vx/aXl)x7 = 0 we can write 

[�89 - (toX) 2) + a1,3 x3 + Vl(X~) + V~ - c~2~c]t~l ~ = 0 (36) 

where  

X~ = -K1,2X22(1 +3Ka,oK,.2xZ~), 

o)2 = o32(1 + 6Klx~) ,  (37) 

V,(x~) = -(o;,  Ir 

Apply ing  the per turba t ion  theory  to Eq. (36) and  expand ing  to" in a power  series 
o f  the var iable  x2 we obtain  

~ c  = �89 wzx2)2 + v2x 4 + U + V~ (38) 

where  

W2 = ( to 2 __ 6~1Kl ,oK1,2  N1)  l/ 2, 

-2 2 v2 = - t o l K m / 2 ,  (39) 

U = o31N1 + K~.0e3(1); 

here 

e3(i) = - ( 7  + 60N2) /16  

and  fur ther  

e2(i) = 3(1 + 4 N ~ ) / 8 ,  

e4(i) = - ( 6 7  + 68 N 2) Ni/16. 

In  ana logous  way we solve Eq. (17, k = 2) with A2~,1 = 0 and  obta in  

3 
~3~7(X3) = ~, Cnx~ (40) 

rl=0 

where 

Co = wiN,  + to2N2(1 - all2) + k~,oe3(1) - Q(1 + d ) / 2 +  P/4,  

C1 = kl,3(tol N1 + 3d~,2N2/2 + Q(1 + 3d/2)  - P), 
(41) 

Cz = (o)2/2) - kZ.3(2w,N1 + 15dto2N2 + 8 Q) /4 ,  

C3 = a3,o+ k31,3to1N1/2 

where 

k~3 = ai3w 12, 

d = 6 kl,okl,2tol NltO 22, (42) 

O = e~(2)(to,k~,2/~o2) 2, 

P = e4(2)(o91 kl,z/to2)4/to2- 
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N o w ,  we f ind the  E ~ e  energ ies  as 

E ~ e  ~f3~e(x~) + o33N3 + 2 " 4  = C3e3(3)/w3 (43) 

where  

x~ = ( (4C22-  12CIC3)1/2 _ _  2C2)/6C3, 

~3 = (2C2 + 6C3x~) '/2. (44) 

In  o rde r  to ca lcu la te  E A energ ies  we d e t e r m i n e  A~.l(Ak.l = Ak, l-~ A ~ )  

2 ~ 2 3 ~ 4 
A2~,1 = 2 K  1,2o91 Nix2  + 18 K 1,=K1,0o91N1 x2, 

Aa3,1 -- M1 k12 3(1 - 4kl  ,3x3 q- 24 k1,2kl ,oN2/w 22)/16 (45) 

A3,~ = 9 M2( ka,3b )2/ 64 -~ 10 -7 

where  

b = 2to I N 1 kl,2(3 k~,o - 2 k1,2)/0)22. (46) 

I f  we take  in to  a c c o u n t  the  co r r ec t ion  A2~,1 in  Eq. (17, k = 1) t h e n  we ca lcu la te  

energ ies  d e n o t e d  by  E ~ r e p l ac i n g  in  f o r m u l a e  (41) d by  b. I f  we also take  in to  
a c c o u n t  the  co r r ec t i on  ~ o4 A3,1(A3,2 = 0) t h e n  we m u s t  ca lcu la te  energ ies  d e n o t e d  by  
E ~r t a k i n g  

C o +  MlkaZ,3(1 +24kl,2kl ,oN2/w2)/16 

i n s t ead  o f  Co a n d  

C 1 - M 1 k~,3/4 

i n s t ead  o f  C~. 

I n  a s imi la r  way  we c an  ca lcu la te  energies  E ~ ,  E ~ a n d  E ~r for  the  d iv i s i on  o f  
the  space  X = (xl,  x=, x3) in to  subspaces  1 = (x=), 2 = (x~), 3 = (x3). 
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